Organic Chemistry

by

Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside

orgchembyneuman@yahoo.com <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/>

Chapter Outline June, 2013

I. Foundations

- 1. Organic Molecules and Chemical Bonding
- 2. Alkanes and Cycloalkanes
- 3. Haloalkanes, Alcohols, Ethers, and Amines
- 4. Stereochemistry
- 5. Organic Spectrometry

II. Reactions, Mechanisms, Multiple Bonds

- 6. Organic Reactions *(*Not yet Posted*)
- 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution
- 8. Alkenes and Alkynes
- 9. Formation of Alkenes and Alkynes. Elimination Reactions
- 10. Alkenes and Alkynes. Addition Reactions
- 11. Free Radical Addition and Substitution Reactions

III. Conjugation, Electronic Effects, Carbonyl Groups

- 12. Conjugated and Aromatic Molecules
- 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids
- 14. Substituent Effects
- 15. Carbonyl Compounds. Esters, Amides, and Related Molecules

IV. Carbonyl and Pericyclic Reactions and Mechanisms

- 16. Carbonyl Compounds. Addition and Substitution Reactions
- 17. Oxidation and Reduction Reactions
- 18. Reactions of Enolate Ions and Enols
- 19. Cyclization and Pericyclic Reactions *(*Not yet Posted*)

V. Bioorganic Compounds

- 20. Carbohydrates
- 21. Lipids
- 22. Peptides, Proteins, and α -Amino Acids
- 23. Nucleic Acids

Note: Chapters marked with an () are not yet posted.

Detailed Contents June, 2013

I. Foundations

1: Organic Molecules and Chemical Bonding

1.1 Organic Molecules	1-4
Bonding Characteristics of Atoms (1.1A)	1-4
Bonds and Unshared Electron Pairs for C, N, O, and F	
Bonds and Unshared Electron Pairs for Other Atoms	
Structures of Organic Molecules	
Compounds with Four Single Bonds to C (1.1B)	1-8
Alkanes (C-C and C-H Bonds)	
Compounds with C-X, C-O, or C-N Bonds	
Additional R Groups on N or O	
Functional Groups	
Compounds with Double and Triple Bonds to C (1.1C)	1-12
Alkenes (C=C) and Alkynes (C=C)	
Compounds with $C=N$, $C=N$, and $C=O$ Bonds	
Functional Group Summary	
Compounds With $C=O$ Bonded to N, O, or X (1.1D)	1-19
An Overview of Organic Functional Groups (1.1E)	1-19
1.2 Chemical Bonds	1-24
Localized Molecular Orbitals (1.2A)	1-24
Electronic Structure of Atoms (1.2B)	1-26
Electron Configurations	
Atomic Orbitals	
Lobes and Nodes	
Chemical Bonds in Alkanes (1.2C)	1-29
C-H Bonds in CH4	
sp^3 Hybrid Orbitals of C	
C-H and C-C Bonds in Ethane	
C-H and C-C Molecular Orbitals	
Chemical Bonds in Alkenes and Alkynes (1.2D)	1-36
Hybridization of C in $C=C$ Bonds	1-30
C-H and C =C Molecular Orbitals	
Hybridization of C in $C=C$ Bonds	
The Shapes of Molecules (VSEPR) $(1.2E)$	1-44
	1-44
Bonds between C and N, O, or X (1.2F) Carbon-Nitrogen Bonds	1-44
•	
$CH_3-NH_2 (sp^3 N)$	
$CH_2 = NH (sp^2 N)$	
H-C=N (sp N)	
Carbon-Oxygen Bonds	
Carbon-Halogen Bonds	
1.3 Organic Chemistry	1-51
Molecular Structure (1.3A)	1-53
Chemical Reactions (1.3B)	1-54
Bioorganic Chemistry (1.3C)	1-54
1.4 Bon Voyage!	1-55

2: Alkanes and Cycloalkanes

2.1 Alkanes	2-3
Structures of Alkanes (2.1A)	2-3
Kekulé, Electron-Dot and Three-Dimensional Structu	ures
Condensed Structural Formulas	
Molecular Formulas	
Structural Isomers	
Line-Bond Structures	
Alkane Names and Physical Properties (2.1B)	2-8
Physical Properties	
Names	
2.2 Allegas Systematic Nomenalature	2-10
2.2 Alkane Systematic Nomenclature	2-10 2-10
Alkane Nomenclature Rules (2.2A)	2-10
The Prefixes Di, Tri, and Tetra	
Many Ways to Draw the Same Molecule	2.17
Alkyl Groups Besides Methyl (2.2B)	2-17
Names of Alkyl Groups	
Isopropyl and t-Butyl	
2.3 Cycloalkanes	2-22
Structural Drawings (2.3A)	2-22
Nomenclature (2.3B)	2-24
Numbering a Cycloalkane	
<i>Physical Properties</i> (2.3C)	2-24
2.4 Conformations of Alkanes	2-27
Staggered and Eclipsed Conformations of Ethane (2.4A)	2-27
A Comparison of Staggered and Eclipsed Conforma Newman Projections	
Rotation about the C-C Bond (2.4B)	2-28
Rapid Rotation about C-C Bonds	2-20
Energy and Stability	
Conformations of Other Alkanes (2.4C)	2-30
Propane	2-30
Butane	
Torsional Strain and Steric Strain (2.4D)	2-32
Torsional Strain and Steric Strain (2.4D) Torsional Strain	2-32
Steric Strain	
	2-34
Anti and Gauche Staggered Conformations (2.4E) Anti Conformation	2-34
Gauche Conformation	
Guiche Conformation	
2.5 Conformations of Cycloalkanes	2-36
Cyclopropane, Cyclobutane and Cyclopentane (2.5A)	2-36
Cyclohexane (2.5B)	2-39
Axial and Equatorial Hydrogens	
Drawing Cyclohexane Chair Conformations	
C-C Rotation in Cyclohexane (Ring Flipping)	
2.6 Conformations of Alkylcyclohexanes	2-43
Methylcyclohexane (2.6A)	2-46
Axial versus Equatorial CH3	1.0
Conformational Mixtrue	
Other Monoalkylcyclohexanes (2.6B)	2-46
Equatorial Preferences	2-40
Liquator tar 1 reger chees	(continued next page)

2.6 Conformations of Alkylcyclohexanes (continued) <i>Conformations of Dialkylcyclohexanes</i> (2.6C) <i>1,1-Dialkylcyclohexanes</i>	2-49
1,4-Dialkylcyclohexanes Molecular Configurations of 1-Isopropyl-4-methylcyclohexane 1,2- and 1,3-Dialkylcyclohexanes	2.52
cis and trans Dialkylcycloalkanes (2.6D) cis and trans-1,2-Dimethylcyclopropane cis and trans-1-Isopropyl-4-methylcyclohexane	2-52
Use of cis and trans with Other Dialkylcyclohexanes Drawings of cis and trans Dialkylcycloalkanes	
Haloalkanes, Alcohols, Ethers, and Amines	
3.1 Halogen, OH, and NH ₂ Functional Groups	3-3
Haloalkanes, Alcohols, and Amines (3.1A)	3-3
Simple Examples	
Unshared Electron Pairs and Polar Bonds	2.5
Unshared Electron Pairs (3.1B) Carbon, Nitrogen, Oxygen, and Fluorine	3-5
Chlorine, Bromine, and Iodine Hydrogen	
Chemical Reactivity of Unshared Electron Pairs	
Bond Polarity (3.1C)	3-7
Electron Distribution in Polar Bonds	
Electronegativity	
Dipoles and Dipole Moments	
3.2 Haloalkanes (R-X)	3-10
Nomenclature (3.2A)	3-12
Halogens are Substituents Common Nomenclature	
3.2 Haloalkanes (R-X) (continued)	
Properties of Haloalkanes (3.2B)	3-14
Polarity and Dipole Moments	• • •
C-X Bond Length and Size of X	
Apparent Sizes of X	
Boiling Points	
C-X Bond Strengths	
3.3 Alcohols (R-OH)	3-19
Nomenclature (3.3A)	3-19
Systematic Names	
Common Nomenclature	
Properties of Alcohols (3.3B)	3-22
Structure Polarity	
Hydrogen Bonding (3.3C)	3-24
The OH Group Forms Hydrogen Bonds	521
Effect on Boiling Points	
Effect on Solubility	
3.4 Ethers (R-O-R)	3-26
<i>Physical Properties and Structure</i> (3.4A)	3-20
Boiling Points	5 20
Bond Angles	
(continued	l next page)

3.4 Ethers (R-O-R) (continued) Nomenclature (3.4B)	3-28
Systematic Nomenclature	0 20
Common Nomenclature	
Cyclic Ethers (3.4C)	3-28
Nomenclature	
Properties	
3.5 Amines (RNH ₂ , R ₂ NH, R ₃ N)	3-31
1°, 2°, and 3°Amines (3.5A)	3-31
Nomenclature (3.5B) 1°Amines (RNH ₂)	3-34
2° and 3° Amines (R ₂ NH and R ₃ N)	
Common Nomenclature Cyclic Amines	
Structure and Properties of Amines (3.5C)	3-38
Structure	
Inversion at Nitrogen	
Polarity and Hydrogen Bonding Bond Strengths and Bond Lengths	
bona Strengths and bona Lengths	
3.6 Amines are Organic Bases	3-43
Aminium Ions (3.6A)	3-44
Nomenclature Protonation of Amines	
3.6 Amines are Organic Bases (continued) Basicity of Amines (3.6B) Conjugate Acids and Bases The Strengths of Bases The Strengths of the Conjugate Acids of these Bases The Relation Between Stregths of Conjugate Acids and Bases Aminium Ion Acidity (3.6C) Methanaminium Chloride Acid Strength of Aminium Ions Some K Values for Acids in Water K _a and K Values for Aminium Ions K _a Values Measure both Acidity and Basicity K _a and pK _a Values Effects of R on R-NH3 ⁺ Acidity and R-NH2 Basicity Comparative Basicities of 1°, 2°, and 3° Amines Basicity of Alcohols and Ethers (3.6D)	3-45 3-49 3-57
Basicity of Alcohols and Ethers (3.6D) Basicity of Haloalkanes (3.6E)	3-57 3-57
Stereochemistry	5-57
4.1 Tetrahedral Carbon Configurations	4-3
Two Configurations at Tetrahedral Carbon (4.1A) Non-Superimposable Mirror Images	4-3 4-3
Handedness and Chirality	A A
Chiral Atoms (4.1B) Chiral Carbon Atoms	4-4
Other Chiral Atoms	
Molecular Chirality	

Chapters 1-23

4.2 S	tereoisomers and <i>R,S</i> Assignments <i>R and S Nomenclature</i> (4.2A) <i>Clockwise and Counterclockwise Isomers</i>	4-6 4-6
	The Assignments of R and S	4-8
	R and S Assignment Rules (4.2B) Case 1. Each Atom Directly Bonded to a Chiral C is Different Case 2. Two or More Atoms Bonded to a Chiral C are the Same Case 3. Groups with Double and Triple Bonds More Complex Molecules	4-8
4.3 T	he Number and Types of Stereoisomers	4-13
	Compounds Can Have 2 ⁿ Stereoisomers (4.3A) 2-Bromo-3-chlorobutane Configuration at C2 in the (2R,3R) Isomer Configuration at C2 in the other Stereoisomers	4-13
	Relationships Between Stereoisomers (4.3B) Enantiomers Diastereomers	4-15
	Compounds with Fewer than 2 ⁿ Stereoisomers (4.3C) 2,3-Dibromobutane Meso Form	4-17
4.4 D	Prawing Structures of Stereoisomers	4-21
	3-D Conformations of Stereoisomers (4.4A) Many Ways to Draw the Same Stereoisomer 3-D Structures for Comparing Stereoisomers	4-21
	Fischer Projections (4.4B) Definition of Fischer Projections Manipulations of Fischer Projections Using Fischer Projections to Draw Stereoisomers	4-24
4.5 (Cyclic Molecules	4-33
	Cyclic Stereoisomers (4.5A) Chiral Centers in 1-Bromo-3-methylcyclohexane Stereoisomers of 1-Bromo-3-methylcyclohexane	4-33
	Stereochemical Relationships between cis and trans Isomers Isomeric Bromomethylcyclohexanes	
	Drawings of Cyclic Stereoisomers (4.5B) Wedge-Bond Structures Chair Forms Haworth Projections	4-37
4.6 0	Optical Activity	4-39
	Rotation of Plane Polarized Light and the Polarimeter (4.6A) Polarimeter Light Rotation by the Sample	4-39
	Magnitude and Sign of Light Rotation (4.6B) Observed versus Specific Rotation Specific Rotations of Enantiomers Relative and Absolute Configurations Specific Rotations of Diastereomers d and l Isomers Racemic Mixture	4-41
Apper	ndix A: Resolution of Stereoisomers Resolution of Diastereomers Resolution of Enantiomers	4-43
Apper	ndix B: Optical Purity %Optical Purity	4-46
Apper	Enantiomeric Excess (%ee) ndix C: Absolute Configuration	4-47

5:	Organic Spectrometry	
	5.1 Spectrometry in Organic Chemistry Types of Spectrometry (5.1A) Mass Spectrometry (MS) Nuclear Magnetic Resonance Spectrometry (NMR) Infrared Spectrometry (IR) Ultraviolet-Visible Spectrometry (UV-Vis)	5-4 5-5
	5.2 Mass Spectrometry (MS) Formation of Molecular and Fragment Ions (5.2A) Molecular Ion Fragment Ions	5-6 5-6
	Molecular and Fragment Ions from Methane. The Mass Spectrometer and Mass Spectrum (5.2B) Mass Spectrometer Mass Spectrum	5-8
	Mass-to-Charge Ratios (m/z Values Peaks for the Molecular Ion and Fragment Ions Hexane (5.2C) Molecular Ion and Fragment Ions from Hexane Exact Mass Values	5-10
	M+1 Peaks and Isotopes Mass Spectra of Hexane Structural Isomers (5.2D) The Molecular Ion Peaks	5-13
	Fragmentation Mass Spectra of Compounds with Functional Groups (5.2E) General Features I-Pentanol ($Y = OH$) I-Pentanamine ($Y = NH_2$) I-Chloropentane ($Y = Cl$ I-Bromopentane ($Y = Br$) I-Iodopentane ($Y = I$) Mass Spectrometry Summary (5.2F)	5-17 5-21
	 5.3 Spectrometry Using Electromagnetic Radiation Electromagnetic Spectrum (5.3A) Photons of Electromagnetic Radiation Frequency and Wavelength of Electromagnetic Radiation Units of Frequency or Wavelength 	5-22 5-22
	Basic Spectrometer Design (5.3B) Spectrometer Components Spectral Peaks	5-25
	5.4 Nuclear Magnetic Resonance Spectrometry <i>The NMR Spectrometer</i> (5.4A) ¹ <i>H and</i> ¹³ <i>C are NMR Active Nuclei</i> (5.4B)	5-26 5-26 5-27
	5.5 ¹³ C NMR Spectrometry General Considerations (5.5A) Some ¹³ C NMR Spectra (5.5B) Methanol versus Ethanol The Other Alcohols	5-27 5-27 5-28
	13C NMR Chemical Shifts (δ) (5.5C) Generalizations for these Alcohols Chemical Shifts Depend on Electron Prediction of ¹³ C δ Values Calculations for 1-Hexanol δ Values and Electronegativity	5-28
	Chemically Equivalent Carbons	(continued next page)

(2/94)-(6/2013) Neuman	Chapters 1-23
5.5 1	³ C NMR Spectrometry (continued) Additional Details about NMR Spectra (5.5D) Shielding High and Low Field	5-36
	The TMS Reference in ${}^{13}C$ NMR Solvents Used in NMR Spectrometry.	
	Qualitative Predictions of ${}^{13}C$ Spectra (5.5E)	5-37
5.6 1	H NMR Spectrometry	5-38
	¹ H versus ¹³ C NMR Chemical Shifts (5.6A)	5-38
	¹ H NMR Spectrum of Bromoethane (5.6B)	5-39
	The Origin of the ¹ H NMR Signals The Shapes of the Signals	
	Signal Splitting in ¹ H NMR Spectra (5.6C) 1-Bromoethane 2-Bromopropane 1-Bromopropane	5-41
	The Origin of ¹ H NMR Signals	
	The Origin of Signal Splitting in ¹ H NMR Spectra The Relative Intensity of NMR Signals (5.6D)	5-48
	Signal Intensities in ¹ H NMR Spectra	
	Signal Intensities in ¹³ C NMR Spectra	
	¹ H NMR Chemical Shift (δ) Values (5.6E)	5-49
	The TMS Reference in ¹ H NMR.	
57 L	ifrared Spectrometry	5-50
5.7 1	Infrared Energy Causes Molecular Vibrations (5.7A)	5-52
	The Infrared Spectrometer (5.7B) IR Sample Cells	5-52
	Solvents for IR Samples. IR Spectra (5.7C)	5-53
	The Horizontal Axis The Vertical Axis.	5.55
	IR Stretching and Bending Signals (5.7D) Characteristic IR Regions Alkanes Amines More IR Later	5-54
501		5-58
5.8 (JV-Visible Spectrometry Structural Requirements for UV-Vis Spectra (5.8A)	5-58 5-58
	UV and Visible Radiation Excites Electrons (5.8B)	5-58
	The UV-Vis Spectrometer (5.8C) UV-Vis Sample Cells	5-59
	Solvents for UV-Vis Spectrometry	5 61
	UV-Vis Spectra (5.8D) The Horizontal Axis The Vertical Axis	5-61
	More UV-Vis Later	

II. Reactions, Mechanisms, Multiple Bonds

6: Organic Reactions (<u>Not Posted</u>)

This chapter will introduce general types of organic reactions. It will highlight the fundamental differences between ionic, radical, and concerted reactions, as well as between single step and multiple step chemical transformations. It also will also introduce and contrast basic concepts of reaction mechanisms, chemical kinetics, and chemical synthesis.

	actions of Haloalkanes, Alcohols, and Amines. cleophilic Substitution	
7.1	Nucleophilic Substitution Reactions of Haloalkanes	7-5
	Nucleophilic Substitution Mechanisms (7.1A)	7-5
	The S _N 1 Mechanism.	
	The Meaning of $S_N l$.	
	The $S_N 2$ Mechanism.	
	$S_N l$ and $S_N 2$ Reactions are Ionic.	
	Conversion of Haloalkanes to Alcohols (7.1B) t-Butyl Alcohol ((CH3)3C-OH) from	7-8
	t-Butyl Bromide ((CH3)3C-Br) (S_N1).	
	Solvent Stabilizes the Intermediate Ions. Methanol (CH3-OH) from Bromomethane (CH3-Br) (S _N 2).	
	H_2O versus $:OH$ as a Nucleophile.	
7.2	S _N 1 versus S _N 2 Mechanisms	7-10
	Steric Sizes of R Groups in R ₃ C-Br (7.2A)	7-11
	Relative S _N 2 Rates for Different R ₃ C-Br.	
	Steric Crowding.	
	Carbocation Stabilization by R Groups in R ₃ C-Br (7.2B)	7-12
	Relative S _N 1 Rates for Different R ₃ C-Br.	
	Carbocation Stability.	
	S_N Mechanisms for Simple Haloalkanes (7.2C)	7-14
	CH_3 -Br and $(CH_3)_3C$ -Br.	
	CH ₃ CH ₂ -Br and (CH ₃) ₂ CH-Br.	
	Alkyl Group Stabilization of Carbocations (7.2D)	7-16
	Carbocation Geometry and Hybridization.	
	Hyperconjugation.	
	Effects of Alkyl Group Substitution at a β -Carbon (7.2E)	7-17
	$S_N I$ Mechanisms.	
	$S_N 2$ Mechanisms.	
7.3	Haloalkane Structure and Reactitvity	7-21
	A Comparison of F, Cl, Br, and I as Leaving Groups $(7.3A)$	7-21
	Relative S_N Rates for RI, RBr, RCl, and RF.	
	S_N Rates of R-X and H-X Acidity.	
	Leaving Group Ability. Other Nucleophiles, Leaving Groups, and Solvents (7.3B)	7-22
	The General Substrate R-L.	1-22
	Preview.	
7.4	Stereochemistry of S _N Reactions	7-23
	Stereochemistry in the S_N Reaction (7.4A)	7-23
	Inversion of Configuration.	
	The Need for a $C-L$ Stereocenter.	
	$S_N 2$ Reactions on 2-Chlorobutane.	
	Stereochemistry in the $S_N l$ Reaction (7.4B)	7-26
	Inversion and Retention of Configuration. Racemic Product.	
7.5	Reaction Rates of S _N Reactions	7-28
	Reaction Rates (7.5A)	7-28
	$S_N 2$ Reaction Rates.	0
	S _N I Reaction Rates.	

(2/94)-(6/201	3) Neuman	Chapters 1-23
7.5	Reaction Rates of S _N Reactions (continued)	
	Activation Energies (7.5B)	7-29
	Energy Diagram for an $S_N I$ Reaction.	
	S _N I Activation Energies.	
	Energy Diagram for an $S_N 2$ Reaction.	
7.6	Other Nucleophiles	7-32
	ROH and RO ⁻ as Nucleophiles (7.6A) ROH Nucleophiles.	7-32
	1	
	RO ⁻ Nucleophiles (Williamson Ether Synthesis). Limitations of the Williamson Ether Synthesis.	
	Alkoxide Ion Formation.	
	Formation of Cyclic Ethers (Epoxides).	
	R_2NH and R_2N^- as Nucleophiles (7.6B)	7-35
	Amine Nucleophiles R ₂ NH.	
	The Amine Products React Further.	
	Two Different R Groups on N.	
	3∞ Amine (R ₃ N:) Nucleophiles.	
	Amide Nucleophiles R_2N^- .	
	S_NI Mechanisms and Amine Nucleophiles.	
	RSH and RS ⁻ as Nucleophiles (7.6C)	7-40
	H_2S and HS^- .	7 10
	-	
	RSH and RS^- .	7.40
	Halide Ion Nucleophiles (X^{-}) (7.6D)	7-42
	Formation of Fluoroalkanes. Formation of Iodoalkanes.	
	The Nucleophiles N_3^- and $-C=N$ (7.6E)	7-43
	Cyanide Ion. $C=N(7.01)$	7-45
	Azide Ion.	
		7.44
1.1	Leaving Groups The OH Group in Alcohols (R-OH) (7.7A)	7-44 7-44
	R -OH is a Poor Substrate for S_N Reactions.	/-++
	$R-OH_2^+$ is a Good Substrate for S_N Reactions.	
	Haloalkanes from Protonated Alcohols. The OR Group in Ethers (R-OR) (7.7B)	7-47
	Haloalkanes from Cleavage of Ethers.	, , ,
	Ring Opening of Cyclic Ethers (7.7C)	7-48
	Epoxide Ring Opening.	
	Acid Catalysis.	
	Epoxide Ring Opening by Halide Ions.	7.51
	A Summary of Leaving Groups (7.7D) Some "Good" Leaving Groups.	7-51
	Some "Poor' Leaving Groups.	
	Leaving Group Ability and K_a Values for H-L.	
7.8	Nucleophilicity and Reaction Solvent	7-52
	The Halide Ions (7.8A)	7-52
	Solvent Dependence of Nucleophilicity. Origin of Solvent Effect.	
	Solvation Changes during an S_N^2 Reaction.	
	Solvation by Hydroxylic Solvents.	
	Polar Aprotic Solvents (7.8B)	7-55
	Some Examples of Polar Aprotic Solvents.	
	Nucleophilic Substitution Mechanisms in Polar Aprotic Sol	
	(contin	ued next page)

(2/94)	-(6/2013)	Neuman	Chapters 1-23
	Nucleophilicities Nucleop Nucleop Nucleop	Reaction Solvent (continued) of Other Nucleophiles (7.8C) hiles and their Conjugate Bases. hiles in the Same Row of the Periodic Table. hiles in the Same Column of the Periodic Table. ative Nucleophilicities in S _N 2 versus S _N 1 Reactions.	7-57
	7.9 Carbon Nucleophile	s	7-58
	Organometallic (Organom	Compounds give C Nucleophiles (7.9A) nagnesium and Organolithium Compounds. Polarity in Organometallic Compounds.	7-59
	C-C Bond Forma Small R Alkyl Gi	ntion Using Organometallic Compounds (7.9B) ing Formation. Youp Coupling. Ins with Epoxides.	7-61
		e and Neutral Carbon Atoms (7.9C)	7-62
	7.10 Nucleophilic Hydr	ogen	7-62
		I in Various Compounds (7.10A)	7-62
	Metal Hydrides a	re Sources of Nucleophilic H (7.10B)	7-64
	Appendix: Nucleophile	s and Leaving Groups	7-66
8:	Alkenes and Alkyne	\$	
	8.1 Alkenes		8-3
	Unbranched Alke	nes (8.1A)	8-3
	Ethene.		
	Propene		
		e and 2-Butene.	
	Alkene Stereoison	lkenes and Cycloalkenes.	8-7
		itene and (Z)-2-Butene.	0-7
		and Z Alkenes.	
		ignment Rules.	
		Stereoisomers are Diastereomers.	
		trans Isomers.	
	More than One C Polyene	C = C in a Molecule (8.1C)	8-12
	Allenes.		
		Substituted Alkenes (8.1D)	8-14
	Alkyl an Alkyl an	d Halogen Substituted Alkenes. d Halogen Substituted Cycloalkenes. d Halogen Substituted Polyenes. With OH or NH2 Groups.	
		n Names of Substituted and Unsubstituted Alkenes.	
	Alkene Stability	(8.1E)	8-17
	C=C Su	Stability of Isomeric E and Z Alkenes. bstitution and Alkene Stability.	
	Stability	of Cycloalkenes.	
	8.2 Alkynes		8-21
	Unbranched Alky	nes (8.2A)	8-21
	Nomenc	lature.	
		tructure.	
	Alkyne Stability		8-23
		nd Lengths (8.2C)	8-23
		Alkenes, and Alkynes. I Hydrogens (8.2D)	8-24
	neutry of C=C-1		d next page)
		(2011)1100	I

8.2 Alkynes (co	ntinued)	
Allenes	(8.2E)	8-25
	Nomenclature.	
	Structure and Bonding.	
	Bond Lengths.	
	ric Features of C=C and C≡C Bonds	8-27
¹³ C NM	IR Spectrometry (8.3A)	8-27
	C=C Bonds.	
	C=C Bonds.	
	Allenes.	
^{I}HNM	R Spectrometry (8.3B)	8-29
	$C=C-H^{1}H\delta$ Values.	
	¹ H Spin-Splitting in Alkenes. Alkynes.	
Infrarea	Spectrometry (8.3C)	8-32
	Spectrometry (8.3D)	8-33
Formation of	Alkenes and Alkynes.	
Elimination	•	
9.1 Elimination	Reactions	9-3
	<i>n</i> Features of Elimination Reactions (9.1A)	9-3
	General Equations.	
	Haloalkane Substrates.	
Mechan	isms for Elimination of H -X (9.1B)	9-4
	The E2 Mechanism.	
<i>a</i> .	The E1 Mechanism.	0.6
Stereoch	hemistry of E1 and E2 Elimination (9.1C)	9-6
	E2 Elimination. E1 Elimination.	
Other F	limination Reactions (9.1D)	9-7
Oliter E	The Elcb Mechanism.)-1
	Elimination of X-X.	
	α -Elimination to form Carbenes. (to be added later)	
9.2 Mechanistic	Competitions in Elimination Reactions	9-9
	tion Competes with Elimination (9.2A)	9-9
	S _N 1 and E1 Reactions Compete.	
	S _N 2 and E2 Reactions Compete.	
	Nucleophile versus Base.	
E1 and	E2 Reactions Can Compete (9.2B)	9-13
	E1 and E2 with 3° Haloalkanes.	
	Strongly Basic Nucleophiles Favor E2 Over E1.	
Differen	tt Alkene Products (9.2C)	9-15
Differen	t Alkene Products (9.2C) Effect of Alkene Stability.	9-15
	nt Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule.	
	nt Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D)	
	at Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity.	
Other H	at Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution.	9-17
Other H	at Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution. the of Base (9.2E)	9-17
Other H	at Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution. the of Base (9.2E) Alkoxide and Amide Ions.	9-15 9-17 9-18
Other H	the Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution. the of Base (9.2E) Alkoxide and Amide Ions. Effect on E2/SN2 Competition.	9-17
Other H The Typ	the Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution. the of Base (9.2E) Alkoxide and Amide Ions. Effect on E2/SN2 Competition. Other Bases.	9-17 9-18
Other H The Typ	the Alkene Products (9.2C) Effect of Alkene Stability. Zaitsev's Rule. Valide Leaving Groups (9.2D) Relative Reactivity. Alkene Product Distribution. the of Base (9.2E) Alkoxide and Amide Ions. Effect on E2/SN2 Competition.	9-17

9.3 Alkynes and Allenes from Haloalkanes	9-20
Dehydrohalogenation (9.3A)	9-20
Different Alkyne Products (9.3B)	9-21
Elimination of X - X (9.3C)	9-22
9.4 Alkenes from Alcohols	9-22
Acid Catalyzed Dehydration (9.4A)	9-23
H_2SO_4 or H_3PO_4 .	
Dehydration Mechanism.	
Alcohol Structure.	
Substitution Can Compete.	
Rearranged Alkene Products (9.4B)	9-25
Carbocation Rearrangements.	
1° Alcohol Dehydration.	
Rearrangements of Carbocations from Other Sources.	
Other Dehydration Reagents (9.4C)	9-27
Alkynes Are Not Formed by Alcohol Dehydration (9.4D)	9-27
9.5 Alkenes from Amines	9-28
Quaternary Aminium Hydroxides (9.5A)	9-28
Hofmann Amine Degradation.	
Alkene Product.	
Amine Oxides Give Alkenes (9.5B)	9-31
Alkenes and Alkynes. Electrophilic and Concerted Addition	Reactions
10.1 Addition Reactions	10-3
General Considerations (10.1A)	10-3
Ionic Addition Reactions (10.1B)	10-4
Electrophilic Addition	
Electrophiles and Nucleophiles	
Nucleophilic Additions	
Non-Ionic Addition Reactions (10.1C)	10-5
Radical Addition	
Concerted Addition	
Summary	
10.2 Electrophilic Addition of H-X or X ₂ to Alkenes	10-6

10-0
10-6
10-11
10-12
10-14
10-15

reaction of it it and it to remy nes	10 10
Addition of H-X (10.3A)	10-15
Addition of X_2 (10.3B)	10-16

10.4 Alkenes to Alcohols by Electrophilic Addition	10-16
Acid Catalyzed Hydration of Alkenes (10.4A)	10-17
Mechanism	
Orientation of Addition	
Rearranged Products	
Oxymercuration-Demercuration (10.4B)	10-17
Overall Transformation	
Mechanism	
Hydration of Alkynes (10.4C)	10-19
10.5 Alkenes to Alcohols by Hydroboration	10-21
Hydroboration of Alkenes with BH3 (10.5A)	10-22
Overall Reaction Sequence	
Formation of the Organoborane Intermediate	
Concerted Addition Mechanism	
The BH ₃ Reagent	
Conversion of R_{3B} to the Alcohol (R-OH)	
Hydroboration with RBH2 and R2BH Reagents (10.5B)	10-26
Disiamyborane	
Thexylborane	
9-BBN	
Regioselectivity	
Hydroboration of Alkynes (10.5C)	10-28
10.6 Addition of H ₂ to Alkenes and Alkynes	10-28
Catalytic Hydrogenation of Alkenes (10.6A)	10-28
Heterogeneous Catalysts	10 20
Heterogeneous Catalysis Mechanisms	
Homogeneous Catalysts	
Structures of Homogeneous Catalysts	
Homogeneous Catalysis Mechanisms	
Hydrogenation of Alkynes (10.6B)	10-31
Catalytic hydrogenation	
Lindlar Catalyst	
Sodium Metal in NH3	
H ₂ Addition Reactions are Reduction Reactions (10.6C)	10-32
Free Radical Substitution and Addition Reactions	
11.1 Free Radicals and Free Radical Reactions	11-3
Free Radicals (11.1A)	11-3
Halogen Atoms	
Alkoxy Radicals	
Carbon Radicals	
11.2 Halogenation of Alkanes with Br ₂	11-6
Bromination of Ethane (11.2A)	11-7
Mechanism	
Initiation Step	
Propagation Steps	
The CH ₃ -CH ₂ · Radical	
Radical Chain Reactions (11.2B)	11-10
Propagation Steps Repeat	11 10
Many Chains Occur Simultaneously	
Termination Reactions (11.2C)	11-11
Combination Reactions	
Disproportionation Reactions	
Polybromination (11.2D)	11-12

(2/94)-(6/2013) Neuman	Chapters 1-23
11.3	Alternate Bromination Sites General Mechanism for Propane Bromination (11.3A) Origins of 1-Bromopropane and 2-Bromopropane (11.3B) Propagation Reactions Termination Reactions Polybromination Relative Yields of 1-Bromopropane and 2-Bromopropane (11.3C)	11-13 11-14 11-14 11-17
11.4	Relative Reactivity of C-H Hydrogens C-H Bond Strengths (11.4A) Bond Strengths C-H Bond Strength and Alkane Structure Relative Reactivities of C-H's	11-18 11-18
	Radical Stability (11.4B) Relative Stabilities of Alkyl Radicals Origin of Radical Stability Order	11-21
11.5	Alkane Halogenation with Cl ₂ , F ₂ , or I ₂ Chlorination (11.5A) Relative Product Yields in Chlorination and Bromination Cl [.] is More Reactive and Less Selective than Br Correlation Between Reactivity and Selectivity	11-23 11-23
	Fluorination and Iodination of Alkanes (11.5B)	11-25
11.6	Radical Additions to Alkenes H-Br Addition (11.6A) H-Br Addition Mechanism (11.6B) Propagation Initiation	11-26 11-27 11-27
	Termination H-Br Addition Regiochemistry (11.6C) Radical versus Electrophilic Addition Radical Stability Steric Effects	11-29
	H-Br Addition Stereochemistry (11.6D) H-I, H-Cl, and H-F Additions are Electrophilic (11.6E) Radical Addition of Br ₂ or Cl ₂ (11.6F) Mechanism Competitive Substitution F ₂ and I ₂	11-32 11-33 11-34
11.7	Alkane Halogenation with Other Reagents t-Butyl Hypohalites (11.7A) Mechanism t-Butyl Hypohalite Preparation	11-36 11-36
	N-Bromosuccinimide (11.7B) Overall Reaction Mechanism	11-37
11.8	Halogen Atom Reactivity and Selectivity Reaction of Methane with X [.] (11.8A) Structural Changes During Reaction Energy Changes During Reaction Exothermic and Endothermic Reactions	11-38 11-39
	Transition States or Activated Complexes (11.8B) Energy Maximum and Transition State Reaction Rates and Activation Energy Reactivity and Activation Energies	11-41
	An Explanation for Selectivity-Reactivity Correlation (11.8C) Resemblance of Transition States to Reactants and Products Radical Character in the Transition State The Hammond Postulate	11-44

III. Conjugation, Electronic Effects, Carbonyl Groups

12: Conjugated and Aromatic Molecules

12.1 Conjugated Molecules	12-4
1,3-Butadiene (12.1A)	12-4
Atomic Orbital Overlap in 1,3-Butadiene	
Molecular Orbitals	
The Bonding M.O.'s	
Conformations	
Other Alternating Multiple Bonds	
Pentadienes (12.1B)	12-7
1,3-Pentadiene	
1,4-Pentadiene	
1,2-Pentadiene.	
Stability of Conjugated Systems (12.1C)	12-9
Heats of Hydrogenation of Pentadienes	
Heats of Hydrogenation of Butadienes	
Aromatic Molecules (12.1D)	12-11
12.2 Reactivity of Conjugated Systems	12-11
Addition of H-Cl to 1,3-Butadiene (12.2A)	12-11
Products	
Mechanism	
Delocalized Carbocation	
Resonance Structures (12.2B)	12-14
Carbocation Resonance Structures	
Meaning of Resonance Structures	
Meaning of The Double Headed Arrow	
Other Reactions with Delocalized Intermediates (12.2C)	12-16
Acid Catalyzed Hydration	12 10
Electrophilic Halogenation	
Free Radical Addition of H-Br.	
The Runear Raumon of IT Dr.	
12.3 Writing Resonance Structures	12-18
A General Procedure (12.3A)	12-19
Carbocations $(C+)$ (12.3B)	12-19
Carbanions (C-) (12.3C)	12-20
Radicals (C·) (12.3D)	12-20
12.4 More on Delocalized Systems	12-21
Localized vs. Delocalized Intermediates (12.4A)	12-21
Reactions other than Addition (12.4B)	12-21
Solvolysis of Haloalkenes	12-21
Radical Halogenation	
Conjugated Systems with Heteroatoms (12.4C)	12-23
Resonance Forms with Heteroatoms	12-23
Relative Importance of Resonance Forms	
Ketative Importance of Resonance Forms	
12.5 Benzenoid Aromatic Molecules	12-25
Benzene (12.5A)	12-25
Reactivity	12 23
Stability	
$^{1}HNMR$ Spectra	10.05
The Real Structure of Benzene (12.5B)	12-27
Benzene Geometry	
Benzene Resonance Structures	
Benzene Molecular Orbitals	

(2/94)-(6/2013)	Neuman	Chapters 1-23
	oid Aromatic Molecules (continued) zene MO's, Resonance, and Unusual Properties (12.5C) Chemical Reactivity	12-25 12-30
	Stability	
Sub	^I H NMR Chemical Shifts stituted Benzenes (12.5D)	12-32
	clature of Benzenoid Aromatic Molecules	12-32
MO	nocyclic Arenes (12.6A) Systematic Nomenclature	12-33
	Common Nomenclature	
orth	no, meta, and para (12.6B)	12-34
	The Phenyl Group The Benzyl Group	
Pol	vcyclic Arenes (12.6C)	12-36
12.7 Aroma	tic Systems without Benzene Rings	12-37
	nulenes (12.7A)	12-37
	Aromatic and Nonaromatic Annulenes Cyclobutadiene and Cyclooctatetraene.	
МО	Resonance Structures Do Not Tell the Story Diagrams for C4H4, C6H6 and C8H8 (12.7B)	12-39
	Cyclooctatetraene	
,	Cyclobutadiene.	12.40
Aro	matic Annulenes Besides Benzene (12.7C) Hückel's Rule	12-40
Het	Other Annulenes eroaromatic Systems (12.7D)	12-41
1100	Pyridine Pyrrole	
	Furan and Thiophene	
Aro	Purine and Pyrimidine matic Ions (12.7E)	12-43
1110	Cycloheptatrienyl Cation	
	Cyclopentadienyl Anion	
	Cyclopropenyl Cation. Cyclooctadienyl Dianion	
	g Substituted Benzenes ctrophilic Aromatic Substitution Mechanism (12.8A)	12-44 12-44
Elec	Electrophiles Arenium Ion Formation	12-44
	Deprotonation of the Arenium Ion	
	Reactions with Substituted Benzenes	
For	mation of the Electrophile (12.8B) Halogenation	12-47
	Sulfonation	
	Nitration.	
N777	Alkylation	12.52
NH	2 and OH Groups on Arenes (12.8C) Synthesis of Aniline (Ph-NH ₂)	12-53
	Synthesis of Phenol (Ph-OH)	
	Acidity of Arene OH Groups Basicity of Arene NH ₂ Groups	
	ometry of Conjugated and Aromatic Molecules	12-57
NM	<i>R Spectral Data</i> (12.9A) ¹ <i>H Chemical Shifts</i>	12-57
	¹ H Chemical Shifts ¹³ C Chemical Shifts	
	C Chemical Shijis	(continued next page)
		10/

(2/94)-	(6/2013)	Neuman	Chapters 1-23
	UV-Visible Co Th	f Conjugated and Aromatic Molecules (continued) Spectral Data (12.9B) njugated Polyenes e Electron Excitation Process enes	12-58
	Th	e Use of UV-Visible Data ectrometry (12.9C)	12-61
13:	Carbonyl Comp Ketones, Aldehy	ounds: /des, Carboxylic Acids	
		pounds <i>yl Group (C=O)</i> (13.1A) <i>compounds from Alcohol Oxidation</i> (13.1B)	13-3 13-3 13-4
	Aldehydes (Carboxylic Ca Common No Ca Ald Ke	kanones) (13.2A) Alkanals) (13.2B) Acids (Alkanoic Acids) (13.2C) rboxylate Ions omenclature (13.2D) rboxylic Acids lehydes tones vl Groups	13-4 13-4 13-5 13-7 13-8
	Oxidation S Bo	atures (13.3A) tates of Organic Compounds (13.3B) nd Order of Carbon Atoms	13-12 13-13 13-13
	Aldehydes fi Py	idation Numbers rom Oxidation of 1° Alcohols (13.3C) ridinium Chlorochromate (PCC) her Cr(VI) Reagents	13-16
	Ketones fro.	m Oxidation of Secondary Alcohols (13.3D) idation of Tertiary Alcohols is Not a Useful Reaction	13-16
	Carboxylic . Ox	Acids from Oxidation of Aldehydes (13.3E) idation of Ketones is Not a Useful Reaction	13-18
	1	e Oxidation States (13.3F)	13-20
13.4 Structure and Reactivity of Bonding and Structure of Bonding Polarity	d Structure of Ketones and Aldehydes (13.4A) nding	13-20 13-20	
	Bonding an Bo	d Structure of Carboxylic Acids (13.4B) nding and Polarity	13-21
	Reactivity a. Ad Ad	drogen Bonding nd Selectivity of C=O Groups (13.4C) dition of Electrophiles dition of Nucleophiles njugate Addition of Nucleophiles	13-22
	Acidity of C Act	e on Reactivity of Neighboring Atoms <i>Carboxylic Acids (Y is O)</i> (13.5A) <i>idity Constants</i>	13-24 13-24
	Acidity of H C-L En	sonance Effects lydrogens on α-Carbons (Y is CR ₂) (13.5B) H K _a Values olate Ions and Enols to-Enol Tautomerization	13-26

13.6 Spectrometric Properties of Carbonyl Compounds	13-29
Ultraviolet-Visible Spectrometry (13.6A)	13-29
$\pi \rightarrow \pi^*$ Excitation	
$n \rightarrow \pi^*$ Excitation	
Infrared Spectrometry (13.6B)	13-30
C=O Stretch	
C-H Stretch in Aldehydes	
O-H Stretch in Carboxylic Acids	
C=O Bands in Carboxylic Acids	
NMR Spectrometry (13.6C)	13-33
¹³ C NMR	
^I H NMR	
Substituent Effects	
14.1 Substituents and Their Effects	14-3
Substituent Effects (14.1A)	14-3
Some Reactions or Properties	
Transmission of Substituent Effects	
Substituents (14.1B)	14-4
A List of Substituents	
Structure-Reactivity Correlations	
14.2 Carboxylic Acid Acidity	14-5
Substituent Effects on Acidity Constants (14.2A)	14-5
Magnitude of the Effect	
Origin of the Substituent Effect	
When the Substituent is F	
How C-F Polarity Affects Acidity.	
Inductive Effects for Other S Groups (14.2B)	14-8
Electron Withdrawing Groups	
Electron Donating Groups	
+I and -I Groups	
Location of S Groups (14.2C)	14-10
Distance Attenuation	
Field Effects	
Additivity of Inductive Effects	
Inductive Effects are General	
14.3 S _N 1 Reactions	14-12
Origin of the Substituent Effect (14.3A)	14-12
Some Substrates S-R-Y (14.3B)	14-13
Solvolysis of Adamantyl Tosylates Solvolysis of Cumyl Chlorides	
Resonance	
Resonance Effects (14.3C)	14-15
p-Substituted Cumyl Chlorides	
The Substituents F and CH3O	
The Origin of the Resonance Effect	
R Effects of Substituents	
+R Groups	
-R Groups	
Correspondence between I and R Properties	
14.4 Electrophilic Aromatic Substitution Reactions	14-19
Reactions on Substituted Benzenes (14.4A)	14-19
Rates and Products Depend on S	
meta versus ortho/para Directors	
-	(continued next page)

14.4 Electrophilic Aromatic Substitution Reactions (continued)	
Directive Effects of Substituents (14.4B)	14-22
Resonance Structures for o, m, and p Reactions	
+R Groups	
-R Groups	
Reactivity of Substituted Benzenes (14.4C)	14-25
-R Substituents	
+R Substituents	
I and R Effects Can Compete	
Halogens have Contradictory Rate and Product Effects	
Reactions at the ortho Positions (14.4D)	14-30
Statistical Effects	11.50
Starisrical Effects Steric Hindrance	
Additional Considerations	
	14-32
Multiple Substituents (14.4E)	14-32
1,4-Dimethylbenzene	
1,3-Dinitrobenzene	
1,3-Dimethylbenzene	
1,2-Benzenedicarboxylic Acid	
p-Chlorotoluene	
m-Chlorotoluene	
Carbonyl Compounds:	
Esters, Amides, and Related Molecules	
	15.2
15.1 Carbonyl Compounds with the Structure R-C(=O)-Z	15-3
The $C(=O)$ -Z Functional Group (15.1A)	15-3
The Z Group	
α -H Acidity and Enol Content	
R-C(=O)-Z Compounds are Interconvertible (15.1B)	15-5
Acid Chloride Interconversions	
Nucleophilic Acyl Substitution	
Oxidation States of $R-C(=O)-Z$ Compounds (15.1C)	15-6
R-C=N versus $R-C(=O)-Z$ (15.1D)	15-6
Comments about Nomenclature (15.1E)	15-7
15.2 Acid Halides (R-C(=O)-X)	15-8
Preparation, Reactivity, and Properties (15.2A)	15-8
Preparation	
Reactivity and Properties	
Nomenclature (15.2B)	15-10
15.3 Esters (R-C(=O)-OR')	15-11
Preparation, Reactivity, and Properties (15.3A)	15-11
Preparation	
Reactivity	
Properties	
Electron Delocalization	
Nomenclature (15.3B)	15-12
The R' Part	15-12
The RC(=O)O Part	
Systematic or Common	
Systemate of Common	
15.4 Amides (R-C(=O)-NR'2)	15-13
Preparation and Reactivity (15.4A)	15-13
Structure of Amides (15.4B)	15-14
Amides are Planar	10 11
C-N Rotation is Restricted	
cis and trans Isomers of Amides	
cis una irans isomers 0j 21111405	

15.4 Amides (R-C(=O)-NR'2) (continued)	
Properties of Amides (15.4C)	15-15
Amide Basicity	
Amide Hydrogen Bonding	
Amides as Solvents	
Nomenclature (15.4D)	15-17
15.5 Anhydrides (R-C(=O)-O-C(=O)-R)	15-18
Preparation, Reactivity, and Properties (15.5A)	15-18
Preparation of Symmetical Anhydrides.	
Preparation of Mixed Anhydrides	
Reactivity of Anhydrides	
Nomenclature (15.5B)	15-20
15.6 Nitriles (R-C=N)	15-20
Preparation and Properties (15.6A)	15-20
Alkyl Nitriles	
Aryl Nitriles	
Properties of Nitriles	
Nomenclature (15.6B)	15-21
15.7 Lactones, Lactams, and Cyclic Anhydrides	15-22
Structure (15.7A)	15-22
Cyclic Anhydrides	
Lactones and Lactams	
Nomenclature (15.7B)	15-23
Lactones	
Lactams	
15.8 Biologically Important Molecules with R-C(=O)-Z Groups	15-24
Esters (15.8A)	15-25
Waxes	
Fats and Oils	
Amides (15.8B)	15-27
Proteins	
Peptides	
Lactams (15.8C)	15-28
15.9 Spectrometric Properties of R-C(=O)-Z and R-C=N	15-28
Ultraviolet-Visible Spectrometry (15.9A)	15-28
Infrared Spectrometry (15.9B)	15-29
C = O Stretch	
C-O Stretch	
N-H Stretch and N-H Bend	
C=N Stretch	
NMR Spectrometry (15.9C)	15-30
$^{13}C NMR$	
I _{H NMR}	
Determination of C-N Rotational Barriers in Amides	

IV. Carbonyl and Pericyclic Reactions and Mechanisms

16: Addition and Substitution Reactions of Carbonyl Compounds

16.1 Carbonyl Groups React with Nucleophiles	16-4
Overview (16.1A)	16-4
	(continued next page)

(2/94)-(6/2013)	Neuman	Chapters 1-23
	Groups React with Nucleophiles (continued) on and Substitution (16.1B) Addition Reactions Substitution Reactions	16-4
Types	Addition and Sustitution Mechanisms of Nucleophiles (16.1C) Enolate Ions	16-6
16.2 The Nucl	eophile HO ⁻	16-6
HO⁻ in	<i>a HOH</i> (16.2A)	16-7
	<i>Relative Nucleophilicities of HO⁻ and HOH</i> <i>Competitive Enolate Ion Formation</i>	
HO ⁻ A	ddition to Ketones and Aldehydes (16.2B) 1,1-Diols are Called Hydrates Ketones, Aldehydes, and Their Hydrates	16-8
HO ⁻ St	ubstitution on R-C(=O)-Z Compounds (16.2C) The Mechanism When Z is OH	16-9
16.3 The Nucl	eophile HOH	16-10
	tion of $C=O$ by Protonation (16.3A) Protonated $C=O$ Group	16-10
Acid (Reaction with HOH Catalyzed Addition of HOH to Aldehydes and Ketones (16.3B)	16-11
	Catalyzed Addition of Water to $R-C(=O)-Z$ (16.3C) The Overall Mechanism The Tetrahedral Intermediate	16-14
	Loss of the Z Group Proton Shifts Amide Hydrolysis as an Example	
"Uncat	<i>Amule Hydrolysis as an Example</i> talyzed" Addition of HOH to Carbonyl Compounds (16.3D) Uncatalyzed Aldehyde Hydration Uncatalyzed Hydrolysis of R-C(=O)-Z	16-17
		16.10
	(ROH) as Nucleophiles <i>Addition to Aldehydes and Ketones gives Hemiacetals</i> (16.4A)	16-19 16-19
	Hemiacetal Formation Mechanism	
Acid C	Catalyzed Formation of Acetals (16.4B) Acetal Formation Mechanism	16-21
ROH A	Acetals Serve as Protecting Groups Addition to R-C(=O)-Z (16.4C) General Mechanism	16-23
	ROH Reaction with Acid Halides ROH Reactions with Carboxylic Acids and Esters	
16.5 Amines (H	R2NH) as Nucleophiles	16-25
•	on of Amines with Ketones or Aldehydes (16.5A) Imines Enamines	16-25
Reaction	on of Amines with R-C(=O)-Z (16.5B) Amines and Anhydrides or Esters Amines and Carboxylic Acids	16-29
	Nitrogen Nucleophiles (16.5C) Hydrazines as Nucleophiles	16-31
W 0lff-	Kishner Reaction Hydroxylamine as a Nucleophile	
16.6 Carbon C	Centered Nucleophiles	16-32
	ent Types of C Nucleophiles (16.6A)	16-32 ued next page)

16.6 Carbon Centered Nucleophiles (continued) Organometallic Reagents (16.6B)	16-33
Overview	
Magnesium, Lithium and Zinc Reagents	16.24
Addition of "R-M" to Aldehydes and Ketones (16.6C)	16-34
Stepwise Reactions Solvents	
Mechanisms	
Side Reactions	
Addition of "R-M" to Carbonyl Compounds $R-C(=O)-Z$ (16.6]) 16-36
A General Mechanism A	7) 10-50
3° Alcohol Formation	
Ketone Formation	
16.6 Carbon Centered Nucleophiles (continued)	1(20
Reactions of "R-M" with Carboxylic Acids (16.6E)	16-38
Reactions with CO ₂ (16.6F)	16-38
Reaction of Cyanide Ion with $C=O$ Groups (16.6G)	16-38
Cyanohydrins	
Mechanism of Cyanohydrin Formation	
Reaction of $Ph_3P=CR_2$ with $C=O$ Groups (16.6H)	16-40
Wittig Reaction	
Formation of the Wittig Reagent	
Mechanism of the Wittig Reaction	
16.7 Other Nucleophiles	16-42
The Hydride Nucleophile (16.7A)	16-42
Chloride Ion as a Nucleophile (16.7B)	16-43
16.8 Nucleophilic Addition to C=N and C=N Bonds Additions to C=N (16.8A) Addition of Water	16-45 16-45
Addition of Organometallic Reagents Addition of Cyanide Ion	
Strecker Synthesis	
Additions to $C=N(16.8B)$	16-47
Addition of Water	
Hydrolysis Reaction Mechanism Addition of Organometallic Reagents	
Oxidation and Reduction	
17.1 Oxidation and Reduction Occur Together	17-3
Redox Reactions Involve Electron Transfer (17.1A) Inorganic Redox Reactions	17-3
Organic Redox Reactions	
Oxidation Levels of Organic Compounds (17.1B)	17-5
Carbon Oxidation Numbers	
Definitions of Organic Oxidation and Reduction	
Presentation of Redox Reactions in this Chapter	
17.2 Oxidation of Alcohols and Aldehydes	17-6
Oxidation Using Cr(VI) Reagents (17.2A)	17-6
Chromate and Dichromate Reagents	1, 0
Unwanted Oxidation of Aldehydes	
Jones Oxidation	
Modified Cr(VI) Reagents	
Cr(VI) Oxidation Mechanisms	
	(continued next page)

(2/94)-(6/2013)	Neuman	Chapters 1-23
	lation of Alcohols and Aldehydes (continued) Other Inorganic Oxidizing Agents (17.2B) MnO ₂ / Sodium Hypochlorite (NaOCl)	17-10
C	<i>MnO2 / Solum Hypochorie (NdOCt)</i> <i>Organic Oxidizing Agents</i> (17.2C) <i>Ketones to Esters</i> <i>Aldehydes to Carboxylic Acids and Alcohols</i> <i>Alcohols to Ketones or Aldehydes</i>	17-11
	lation of Carbon-Carbon Multiple Bonds ddition of Oxygen to C=C Bonds (17.3A) Epoxide Formation Using Peroxyacids	17-15 17-15
C	Formation of syn-1,2-Diols Using OsO4 or MnO4 ⁻ Formation of anti-1,2-Diols Oxidative Cleavage of Carbon-Carbon Multiple Bonds (17.3B) Cleavage Using Ozone (O3)	17-17
	Cleavage Using CrO3 or KMnO4	
	Cleavage of 1,2-Diols Using HIO4 or Pb(OAc)4	
	lation of Alkyl Groups <i>Metal Oxide Oxidations</i> (17.4A) <i>KMnO4 and CrO3</i>	17-19 17-20
ſ	Cl ₂ CrO ₂ / SeO ₂ Oxidations D ₂ Oxidations (Autoxidation) (17.4B)	17-20
	Autoxidation Mechanism Synthetic Utility	17-20
	ools, Hydroquinones, and Quinones Formation of Phenols (17.5A) From Cumene From Aryl Halides From Arylsulfonic Acids From Diazonium Ions	17-21 17-22
F	From Diazonium ions Formation of Quinones and Hydroquinones (17.5B)	17-24
G	Action Reactions General Features (17.6A) Types of Reduction Reactions (17.6B) Reduction Using H ₂ Metal Hydride Reagents Presentation of Reduction Reactions	17-25 17-25 17-25
	action of Ketones and Aldehydes lcohols from Metal Hydride Reductions (17.7A) LiAlH4 Mechanism	17-27 17-27
A	NaBH4 Mechanism Alcohols from Diborane Reduction Icohols from Organic Reducing Agents (17.7B) Cannizzaro Reaction	17-30
A	Meerwein-Ponndorf-Verley Reduction Ikyl Groups from C=O Reduction (17.7C) Clemmensen Reduction Wolff-Kishner Reaction	17-31
	action of R-C(=O)-Z and Related Compounds lcohol Formation (17.8A) General LiAlH4 Mechanism Carboxylic Acid Reduction	17-32 17-33
	Diborane Reduction of Carboxylic Acids	ued next page)
	(contrait	····· r ····· r ····· r

(2/94)	(6/2013)	Neuman	Chapters 1-23
	17.8 Reduction of R-C(=O)-Z a	nd Related Compounds (continued)	
	Amine Formation (17.8B		17-34
	Reduction of Ar		
	•	$C=N and R-NO_2$	
	Aldehyde Formation (17		17-35
		$d LiAlH(O-C(CH_3))_3$	
		obutylaluminum Hydride (DIBAL)	
	Nitriles and DI Rosenmund Rea		
	Kosenmunu Keu	luction	
	17.9 Reduction of C=C and C=	C Bonds	17-37
	Reduction of Alkenes and		17-37
	Reduction of Arenes (17)		17-37
18:	Reactions of Enolate Ions	and Enols	
	18.1 Enolate Ions and Enols		18-3
		n, and Condensation Reactions (18.1A)	18-3
	Acidity of α -C-H's (18.1		18-4
	Resonance Stab		10 5
	Enol Form of the Carbo Protonation on		18-5
		Enol Formation	
	Enol Content	Lifet I of mation	
	Other Types of "Enolate	" <i>Ions</i> (18.1D)	18-7
	Active Hydrogen		
	Reactions of Ac	tive Hydrogen Compounds	
	18.2 Halogenation Reactions		18-8
	The General Halogenation	on Reaction $(18.2A)$	18-8
		ation of Ketones and Aldehydes (18.2B)	18-8
	Mechanism	······································	
	Polyhalogenatie	on	
	Regiospecificity		
		nes and Aldehydes Using Base (18.2C)	18-10
	Mechanisms		
	Polyhalogenatic The Haloform		
	The Haloform 1 Regiospecificity		
		onyl Compounds R - $C(=O)$ - Z (18.2D)	18-13
	ē .	ls, Acid Halides, and Anhydrides	10 10
	18.3 Alkylation Reactions		18-14
	α -Alkylation Mechanism		18-14
	C versus O Alk		
	Bases and Solve	ents olvents	
	Bases / So Alkylation of Ketones an		18-16
		Aldehydes (18.5D)	10-10
		Carboxylic Acids (18.3C)	18-18
		Carboxylic Acids	
	18.4 Condensation Reactions		18-18
	The Aldol Reaction (18.4	4A)	18-18
	The Base		
	The New C-C E Aldol Reaction		
		the Aldol Product	
	Aldol Reactions		
		Aldol Reactions	
	-		d next page)

18.4 Condensation Reactions (continued)	
Variations on the Aldol Reaction (18.4B)	18-23
Mixed Aldol Reactions	
Intramolecular Aldol	
The Enolate Ion is Not from a Ketone or Aldehyde	
The Claisen Condensation (18.4C)	18-27
Claisen Condensation Mechanism	
General Claisen Condensation Mechanism	
The Claisen Condensation Product is "Acidic"	
The Dieckmann Condensation	
Variations of the Claisen Condensation	
18.5 Enolate Ions from β-Dicarbonyl Compounds	18-31
Acidity of α -H's in β -Dicarbonyl Compounds (18.5A)	18-31
α -Alkylation of β -Dicarbonyl Compounds (18.5B)	18-31
Their Mechanisms are Similar	
Decarboxylation of Carboxylic Acids with β -C=O Groups	
Further Alkylation	
Alkylation of Other Z-CH ₂ -Z'	
18.6 Other Reactions of Enolate Ions and Enols	18-34
Michael Addition Reactions (18.6A)	18-34
Mechanism	10.51
Robinson Annulation (18.6B)	18-36
Mechanism	
Enamine Alkylation (18.6C)	18-38
Stork Enamine Reaction	10 00
Dialkylation	
Reformatsky Reaction (18.6D)	18-39
Products and Mechanism	
The Mannich Reaction (18.6E)	18-40

19: Cyclization and Pericyclic Reactions (<u>Not Posted</u>)

Reactions That Make Rings Cyclization Reactions **Enolate Ion Intermediates** Intramolecular Aldol Reaction. Dieckmann Condensation. Malonic and Acetoacetic Ester Syntheses. Robinson Annulation. Favorskii Rearrangement. Organometallic Intermediates Intramolecular Grignard Reactions. Intramolecular Wurtz Reactions. Intramolecular Wittig Reaction. Cationic Intermediates Friedel-Crafts Reactions. Carbocation Addition to Alkenes. Carbocation Ring Contraction and Expansion. Ring Expansion of Cyclic Ketones. Radical Intermediates Intramolecular Addition of Carbon Radicals to C=C. Acyloin Ester Condensation. Carbene and Carbenoid Intermediates Methylene. Alkylcarbenes. Diahalocarbenes. Carbenoid Species.

19: Cyclization and Pericyclic Reactions (<u>Not Posted</u>) (continued)

Pericyclic Reactions

Cycloaddition Reactions The Diels-Alder Reaction (2 + 4 cycloaddition). Alkene Dimerization (2 + 2 Cycloaddition of Alkenes). Theoretical Considerations of Cycloaddition Reactions The Möbius-Hückel Method. Frontier Orbital Method. Electrocyclic Rearrangements Electrocyclic Ring Closure. Electrocyclic Ring Opening. Sigmatropic Rearrangements The Cope Rearrangement. The Claisen Rearrangement. Hydrogen Migration. Pericyclic Rules for Sigmatropic H Migrations. Sigmatropic C Migrations. Pericyclic Rules and the Cope and Claisen Rearrangements.

V. Bioorganic Compounds

20: Carbohydrates

20.1	Monosaccharides	20-3
	Furanoses and Pyranoses (20.1A)	20-4
	Glucose and Related Pyranohexoses (20.1B)	20-4
	Chiral C Atoms	
	Enantiomers and Diastereomers	
	R,S Configurations	
	D and L	
	α and β .	
	Configurations at the Other Chiral C's	
	Haworth Projections	
	Chair Forms of Monosaccharides	
	Mutarotation (20.1C)	20-10
	α and β Anomers are in Equilibrium	
	The Mutarotation Reaction	
	Equilibrium Concentrations of α and β -D-Glucose	
	Acyclic Mutarotation Intermediates (20.1D)	20-12
	Representations of the Acyclic Intermediate	20-12
	Acyclic Forms of the Other Stereoisomers	
	Furanose Forms (20.1E)	20-15
	Glucose has Furanose Forms	20-15
	Furanose Forms of Other Monosaccarides	
	Other Monosaccharides (20.1F)	20-16
		20-10
	Aldotrioses, Aldotetroses, and Aldopentoses	
	Cyclic Forms of C_3 , C_4 , and C_5 Aldoses	
	Ketoses	
20.2	Chemical Reactions of Monosaccharides	20-19
	Isomerization Reactions (20.2A)	20-19
	Mutarotation	
	Epimerization	
	Nucleophilic Addition and Substitution (20.2B)	20-21
	Glycoside Formation	
	Anomerization and Hydrolysis of Glycoside	
	Addition of Carbon Nucleophiles	
	Addition of Nitrogen Nucleophiles	
	Esters and Ethers	
		(continued next page)

(2/94)-(6	5/2013	3) Neuman	Chapters 1-23
	20.2	Chemical Reactions of Monosaccharides (continued) Oxidation and Reduction (20.2C) Halogen and Hypohalite Oxidations Oxidation with HNO3 or NO2 Reduction with NaBH4	20-24
	20.3	Polysaccharides and Oligosaccharides Disaccharides and Trisaccharides (20.3A) Maltose and Cellobiose Lactose Sucrose	20-25 20-25
		Reducing Sugars Trisaccharides Polysaccharides (20.3B) Structural Polysaccharides Storage Polysaccharides Mucopolysaccharides Glycoproteins	20-29
21:	Lipi	ids	
	21.1	Structures of Lipids Fats, Oils, and Related Compounds (21.1A) Fatty Acids. A Comparison of Fats and Oils Hydrogenation of Fats and Oils Soaps Detergents Waxes	21-2 21-2
		Glycerophospholipids The Biological Origin of Fatty Acids Prostaglandins (21.1B) Terpenes and Steroids (21.1C) Terpenes Steroids	21-7 21-8
	21.2	Biosynthesis of Lipids Acetyl-CoA (21.2A) Fatty Acids (21.2B) Palmitic Acid Types of Reactions in Palmitic Acid Biosynthesis Other Fatty Acids Fats, Oils and Phospholipids (21.2C) Waxes (21.2D) Prostaglandins (21.2E)	21-11 21-11 21-13 21-16 21-18 21-18
		Terpenes (21.2F) Steroids (21.2G)	21-18 21-22
22:	Pep	tides, Proteins, and α-Amino Acids	
	22.1	Peptides Peptide Structure (22.1A) α-Amino Acids in Peptides α-Amino Acids Can be D or L The R Groups Categories of "Standard" Amino Acids	22-3 22-3
		Abbreviated Names Peptide Synthesis (22.1B) General Considerations Automated Peptide Synthesis	22-8

(2/94)-(6/2013)	Neuman	Cha	pters 1-23
	22.2 Protein St	ructure and Organization	22-12	
		$y(1^\circ)$ Structure (22.2A)	22-12	
		Content		
		Sequence		
		Separation of Individual Peptide Chains		
	Second	ary (2°) Structure (22.2B)	22-16	
		Planarity of Amide Groups		
		Helical Structures		
		β-Pleated Sheets		
	Touting	Other Structures $(22,20)$	22 10	
	Terilar	y (3°) Structure (22.2C) Fibrous Proteins / Globular Proteins.	22-19	
	Factors	that Determine Protein Shape (22.2D)	22-20	
	1 401015	Hydrophobic Bonding		
		Electrostatic Interactions and Hydrogen Bonding		
		Disulfide Bonds		
		Quaternary (4°) Structure		
		Denaturation		
	22 3 Properties	of α-Amino Acids	22-23	
	-	to Acids Are Polyprotic Acids (22.3A)	22-23	
	G IIIIII	Diprotic α -Amino Acids		
		Diprotic Amino Acid Forms at Different pH Values		
		Triprotic α -Amino Acids		
		Aspartic and Glutamic Acid		
		Lysine, Arginine, and Histidine		
		Cysteine and Tyrosine		
	Isoeleci	tric Points (22.3B)	22-30	
	15001001	pI Values of Diprotic Amino Acids	22 50	
		pI Values of Triprotic Amino Acids		
	Labora	tory Synthesis of Amino Acids (22.3C)	22-31	
		Amination of α -Bromo acids		
		Strecker Synthesis		
		Reductive Amination		
	D •	Diethylacetamidomalonate Synthesis	22.21	
	Biosyni	Thesis of α -Amino Acids (22.3D)	22-31	
		Non-Essential Amino Acids Essential Amino Acids		
		Essential Amino Acias		
		nd Enzyme Catalysis	22-34	
	Genera	<i>l Features</i> (22.4A)	22-34	
		Active Sites		
		Enzyme Catalysis Mechanism		
		Substrate Specificity. Types of Enzymes		
	a-Chvn	notrypsin (22.4B)	22-36	
	or enym	a-Chymotrypsin Active Site	22 30	
		General Hydrolysis Mechanism		
		Detailed Hydrolysis Mechanism		
23:	Nucleic Acids			
	23 1 Structures	of Nucleic Acids	23-3	
		tides and Nucleosides (23.1A)	23-3	
	1110100	The Sugar	23 3	
		The Heterocyclic Bases		
		The Phosphate Groups		
		Nucleotide and Nucleoside Nomenclature		
			(continued next page)	

23.1 Structures of Nucleic Acids (conitnued)		
Polynucleotide Structure (23.1B)	23-6	
The Sugar-Phosphate Backbone		
Hydrolysis of Polynucleotides		
Comparative Structures of DNA and RNA (23.1C)	23-7	
The DNA Double Helix		
RNA Polynucleotides		
Sizes of DNA and RNA		
Base Pairing (23.1D)	23-9	
DNA		
RNA		
Tautomers of Heterocyclic Bases		
Forces that Influence Nucleic Acid Structure (23.1E)	23-12	
Hydrogen Bonding		
Hydrophobic Bonding		
Ionic Interactions		
Sequencing Nucleic Acids (23.1F)	23-12	
Sequencing Strategy		
Chemical Sequencing		
Analysis of Cleavage Fragments		
Chemical Cleavage Reagents and their Reactions (23.1G)	23-14	
A and G Nucleosides		
G Nucleosides		
C and T Nucleosides		
23.2 Replication, Transcription, and Translation	23-16	
Replication (23.2A)	23-17	
Replication is Semiconservative		
Replication Occurs $5' \rightarrow 3'$		
Transcription (23.2B)	23-18	
Translation (23.2C)	23-19	
mRNA		
Amino Acid-tRNA Molecules		
Codon-Anticodon Hydrogen Bonding		
Steps in Protein Synthesis		
	23-23	
23.3 Nucleotide Biosynthesis and Degradation		
Biosynthesis (23.3A)	23-23	
Purines Pyrimidines		
Deoxyribose Nucleotides Degradation of Heterocyclic Bases (23.3B)	23-25	
Degradation of Heterocyclic Bases (25.5B) Purines	25-25	
Pyrimidines		
1 yr muunes		